
ALEX: AN ARTIFICIAL CONVERSATIONAL AGENT FOR STUDENTS AT
THE TU BERLIN

Thilo Michael, Stefan Hillmann, Benjamin Weiss

Technische Universität Berlin, Quality and Usability Lab
thilo.michael@mailbox.tu-berlin.de

Abstract: User interfaces of most data-centered software systems are oriented on
the data structure of the respective application. While such interfaces work well for
trained users, they are most often not suitable for non-expert users. In this paper,
we present ALEX, an advisory artificial conversational agent that uses machine
learning and natural language processing to gather information from a relational
database. Specifically, ALEX allows students at the Technische Universität Berlin
(TU Berlin) to query courses and modules in a conversational way using textual
input. The natural language understanding of the system is realized with a pipeline
that uses a Hidden Markov Model tagger to annotate the input and groups phrases
together to form SQL queries. ALEX was evaluated in a research study that com-
pared the conversational agent with the existing online systems of the TU Berlin
which are currently used by students to retrieve information about courses. The
results show that the conversational approach is not only more efficient with non-
expert users, but also has higher hedonic and pragmatic quality. A live demo of the
tool can be found at http://alex.qu.tu-berlin.de.

1 Introduction

Most software systems that are currently used have interfaces that are heavily oriented on the
data structure of the information they are providing. While this allows expert users to quickly
pose complex queries to the database, this approach has the downside of being very hard to learn
(in dependency to the complexity of the information stored in the database). While different user
interface approaches like full-text search or query forms make the software easier to use, they
limit the possibility to pose complex queries (i.e. joining multiple database tables).

In this paper we introduce ALEX, an advisory artificial conversational agent that serves
students as a new interface for information about courses and modules at the Technische Uni-
versität Berlin1. We chose this area of application because courses and modules provide a wide
range of data sets (e.g. teaching content of the courses, time and location of meetings, names
of the lecturers) that can be queried coherently. ALEX, which was created as part of a master’s
thesis [1], allows for a user-driven conversational interaction, in which the user refines queries
about the topic of interest. The queries of the user do not have to conform to a structure. As an
example, the user might ask for courses of a specific professor by typing:

1. User: “Which courses are given by Professor Dumbledore?”
2. Alex: “Here are all courses of Professor Dumbledore.”2

3. User: “Show me only courses that are held on a Monday.”

1ALEX is designed to work in German. The examples in this Paper are translated into English.
2Displaying a list of courses. Compare Figure 1.

28. Konferenz Elektronische Sprachsignalverarbeitung 2017, Saarbrücken

238

mailto:thilo.michael@mailbox.tu-berlin.de
http://alex.qu.tu-berlin.de


4. Alex: “Here are all courses of Professor Dumbledore on a Monday.”2

This example shows that the system is able to continually refine the current query. In order
to achieve this, ALEX keeps track of the progression of the conversation. The system also
detects automatically, if a question from the user is meant to start a new query or not. It also
asks counter questions, if more information for a successful evaluation is needed.

In this paper we outline the interface of ALEX and briefly describe technical details of
the conversational agent. We also present a research study with 30 participants comparing the
efficiency and usability of Alex and the existing system. In Section 2 we will provide context
for the design and methods. In Section 3 we will describe the user interface, data structure and
natural language pipeline of the agent and in Section 4 we will describe the setup and results of
the research study that was carried out.

2 Related Work

ALEX is the continuation of an embodied conversational agent described in [2]. Since the
introduction of human-like interaction with computer by Alan Turing [3], many different scopes
for conversational agents have been defined [4]. While frame based agents have been developed
for areas like booking systems [5] or the health sector [6], their application focus more on a
machine driven conversation that conforms to a certain structure. This constraints the ways the
user is able to ask questions. Goal oriented conversational agents, on the other hand, allow for
a more natural conversation that still provides useful information on a certain topic [7] without
requiring the user to have knowledge about the concrete data structure.

The approach shown in this paper combines the concepts of natural language based and goal
oriented conversational agents to allow for a free goal oriented interaction while employing a
natural language processing to be independent from the domain.

3 Natural Language Understanding in ALEX

ALEX is written in Python, and uses the HiddenMarkovModelTagger of NLTK3. The front-end
is realized as a web application so that the complete system can be easily adapted for different
applications or domains.

The graphical user interface is divided into two parts: a chat window that lets the user
interact with the system and a result view that displays results in a structured way (see Figure
1). After sending a message to the system, an animation inside the conversation is indicating
that the system is busy. The natural-language response of ALEX describes the query that was
just executed and gives an implicit confirmation. The result view contains a table that lists
entities that fit the users query. Depending on which information the user is asking for, the
system displays different properties that might be useful.

The natural language pipeline of ALEX consists of four main steps. First, the input is
sanitized and stop words are removed. Then, the Hidden Markov Model (HMM) tagger assigns
labels to each word in the input sentence. The words and tags are then grouped into coherent
phrases that represent a part of the query. These phrases are then converted into SQL statements
and the query is executed. Finally, a natural language response is created on the basis of the
query’s result. The natural language response and the result are then shown to the user.

3See http://www.nltk.org

239

http://www.nltk.org


3.1 Preprocessing

To harmonize the processing of the users input, it is first tokenised and converted to lower case.
After that, stop words are removed to enhance the performance of the tagging. Lastly, a list
of specified keywords are replaced with their representative words. That way the diction of
different users get converted to a single representation.

3.2 Hidden Markov Model Tagger

The HMM tagger is trained with a tagging schema that assigns to each word one of 6 different
kinds of tags: R-tags, M-tags, C-tags, P-tags, Q-tags, and X-tags.

R-tags (short for Return-tags) are used for words that describe the kind of data the user is
expecting and can be one of R_LIST, R_SINGLE or R_COUNT. For example, a user request
starting with “How many . . . ” would be tagged with R_COUNT, indicating that the result
should be in the form of a number.

M-tags (Model-tags) are used for words that indicate which model the user is requesting. For
example in the question “Which course . . . ”, the word course would be annotated with
M_COURSE, which indicates that the users is searching for a course, rather than a module
or a person.

C-tags (Constraint-tags) are used for groups of words that constrain a field. For example in the
question “Show me courses on a Monday.”, Monday would be tagged with C_CourseDate:
day. This indicates that the user wants to constrain the day-field of the Course-model to
be Monday.

P-tags (Property-tags) are used for group of words that simply denote a property that should
be included in the result. In the question “Show me the type of examination of the module
. . . ”, the type of examination would be tagged with P_Module:typeOfExamination.
This indicates that the user wants to know the field typeOfExamination of the Module-
model and that this information is included in the response.

Q-tags are used for words that modify a constraint and only occur alongside a constraint-
phrase. For example, in the question “Show me courses that begin after 8am.”, the word
after would be tagged with Q_GT (greater than). This information is later combined with
the constraint C_CourseDate:startTime to ensure that only course after 8am are dis-
played.

X-tags are used for words that do not add additional information to the query. While words
tagged with an X might include useful information that is used at some point in the system
(for example the word “help” would be tagged with X_HELP), words with X-tags are not
considered in the query creation process.

As training data, we created a handmade list of 72 sentence-templates with the correspond-
ing tags. These templates cover the common query types and some more complex queries.
Before training, the templates were filled with information from the relational database of the
existing course information system, resulting in over 500,000 sentences that were trained by the
tagger.

3.3 Query Generation

With the input sentences and the resulting tags available, the system then proceeds to construct
the corresponding SQL query. First, the system evaluates the M-tags found in the input sentence
to determine the model (i.e. table) that should be queried. If none of those tags can be found

240



in the input, the system tries to determine the model by analyzing the constraints given by the
user.

Then, the C-tags are clustered together with the Q-tags to form filters. Each filter builds
a part of the WHERE-clause of the resulting SQL statement. A map that connects every model
of the database through foreign keys is used to filter properties of other models than the one
that is being queried. For instance, in order to find all Courses at a specific Institute, the
system would create a path through the different models of the database that connects these two
concepts. In this example, the filter would be “All Courses which are part of Modules that are
given at a Chair that are part of the Institute X”.

With the given filters, the target model and the history of previous requests, the system
collects indicators reflecting if the current question addresses either a new query or an extension
of the previous query. If a critical certainty is not reached, the systems prepares a counter
question to ask the user if the previous query should be extended or not.

3.4 Response Generation

If a query can be executed and gives a non-empty result, the system creates a natural language
response by combining phrases for each field constrained by the query. That way, the user is
able to see how the system has interpreted the given input. Additionally to the description of
the query, the system determines if the user asked for help, greeted or insulted the system and
mixes this information into the natural language response.

For the list view of the query result (see Figure 1), the system selects a set of standard fields
to display. These set of fields depend on the model that is being queried as well as what view
is indicated by the Return-tag. Additional to these standard fields, the properties referenced by
the Constraint- and Property-tags are added to the set of fields to be displayed.

Figure 1 – Screen capture of ALEX with the conversational area
on the left and the result view on the right.

Figure 2 – Procedure
of the research study.

241



4 Evaluation and Results

ALEX was evaluated in a research study with 30 participants and compared against a combina-
tion two online system currently used at the TU Berlin, namely MOSES4 and LSF5. MOSES is
a system used to query information about modules and contents of all majors at the TU Berlin.
LSF is a system used to query information about courses and sessions that take place as part of
modules.

Because a within-subject design could lead to a learning effect of the participants, a between-
group design with two groups was chosen. The 15 participants who tested ALEX were between
21 and 35 years old (M = 27.5, 9 female). The other 15 participants who tested the baseline
systems were between 20 and 34 years old (M=26.8, 7 female). All participants were students
at German universities and familiar with the structure of majors into modules and courses. 12 of
the 30 participants received financial compensation (10e), while the other 18 were personally
acquired volunteers.

4.1 Experimental Setup

Because a between-group design was chosen for the study, two version of the study were pre-
pared. One half of the participants tested ALEX and the other half used MOSES and LSF.
However, both tests consisted of the same tasks and questionnaires to keep the results compa-
rable. The procedure of the study, which is depicted in Figure 2, is split in two main parts: a
sequence of four tasks and a subsequent questionnaire about that interaction, followed by a free
interaction with the system, an interview, and the AttrakDiff Mini [8] questionnaire.

In the beginning of the study, the participants were introduced to the system they were
testing. The introduction consisted of a single page of text describing the tool(s) and a short live
demo of the capabilities of the system(s).

After that, the participants worked on four predefined tasks that they had to complete in a
time frame of 5 minutes per task. During the procedure, the systems were screen-captured and
the audio was recorded. The first two tasks were rather simple and focused on one model (e.g.
“Find all modules in the mandatory study area of the bachelor computer science”). The third
and fourth task were more complex and required the system(s) to combine information from
multiple models (e.g “Find one course of the module ’lighting engineering’ that is held on a
Wednesday.”). For each task the degree of completion (completely solve, partially solved, not
solved, given up), the number of interactions with the system, and the completion time were
measured.

After completing the four tasks, the participants filled out a questionnaire about the interac-
tion with the systems. The questionnaire consisted mainly of 9 sentences for each of which the
participants had to mark if they agree or disagree on a 5-point Likert-scale. This questionnaire
also contained an additional question for participants who tested MOSES/LSF that asked if the
participants had used the systems before.

In the second part of the study, the participants were given a task relating to their own major,
which led them to a longer interaction with the system(s). During the interaction, the computer
screen and the audio was recorded. The test supervisor wrote down the main approaches of
each participant.

After the free interaction, an interview was conducted of which the audio was recorded. The
interview focused mostly on the overall experience of the tested system. Then, the participants
rated the tested system with the AttrakDiff Mini questionnaire.

4Mathematisch Optimale Studenplan-Erstellungs-Software
5Lehre Studium Forschung

242



ALEX MOSES/LSF
Task Feature Avg ± CI Avg ± CI p-Value

Interactions 2.47 1.35 7.87 3.39 < 0.0001
Task 1 Time 75.67 37.29 178.67 78.90 0.0008

Status 3 - 3 - 0.1939
Interactions 3.00 2.22 6.47 3.85 0.0193

Task 2 Time 79.47 41.10 127.20 80.21 0.1030
Status 3 - 3 - 0.0152
Interactions 2.47 1.81 15.53 4.41 < 0.0001

Task 3 Time 60.27 24.10 295.87 53.18 < 0.0001
Status 3 - 1 - 0.0037
Interactions 2.47 1.35 12.53 3.48 < 0.0001

Task 4 Time 65.73 35.91 254.40 77.84 < 0.0001
Status 3 - 1 - 0.0044

Table 1 – Comparison between the average and confi-
dence (CL 95%) of Alex and MOSES/LSF for the num-
ber of interactions, time needed and status for each of the
four tasks. The p-Values are calculated using Wilcoxon
signed-rank test for the status and two-sided t-test with
independent variables for the rest.

Figure 3 – Diagram of the average time and
number of steps for the four tasks.

ALEX MOSES/LSF
No. Statement Avg ± CI Avg ± CI P-Value
S1 I understood the system 3.40 0.44 2.13 0.44 < 0.0001

S2 The system understood my
queries 3.33 0.43 2.67 0.43 0.0176

S3 The system was compre-
hensible 3.40 0.44 2.60 0.59 0.0178

S4 The system acted like I ex-
pected 3.00 0.39 1.80 0.33 < 0.0001

S5 The system was easy for
me to query 3.27 0.42 2.20 0.51 0.0009

S6 The information was clear 3.47 0.44 2.47 0.59 0.0040

S7 The interaction was not
too long 3.00 0.55 1.47 0.63 0.0002

S8 The interaction was fun 3.07 0.35 1.47 0.59 < 0.0001

S9 I would want to use the
system again 3.53 0.31 1.73 0.57 < 0.0001

Table 2 – Average and confidence (CL 95%) for choices
of each statement of the questionnaire. The p-values are
calculated using the two-sided t-test with independent vari-
ables

Figure 4 – Diagram of the average results and
confidence (CL 95%) for each statement of
the questionnaire. The statements (S1 through
S9) can be found in Table 2

4.2 Results

The results for the first part of the study shows that for the baseline systems (MOSES and LSF,
see Figure 3) the time for completion and the number of steps needed for the tasks is much
lower for the first two simpler tasks than for the last two more complex tasks. Also, the median
of the degree of completion of these systems went from fully solved to not solved for the last
two tasks. In comparison, participants who tested ALEX took less time and number of steps for
the tasks but also the results do not vary that much between the first two and last two tasks.

The analysis of the questionnaire handed to the participants after the four tasks shows that
the perceived quality of ALEX is higher than that of MOSES and LSF. While participants who
tested ALEX tend to agree with the sentences given, participants that tested MOSES/LSF are at
average indifferent about the statements.

The results of the AttrakDiff Mini questionnaire that can be seen in Table 3 show that the
ALEX outperforms MOSES and LSF in hedonic and pragmatic quality as well as in attractive-
ness.

The full study and results can be found in [1].

243



ALEX MOSES/LSF
Group Word pair Avg ± CI Avg ± CI p-Value

complicated -
simple 1.33 0.82 −0.93 0.41 < 0.0001

Pragmatic impractical -
practical 1.33 0.57 0.33 0.57 0.0090

Quality unpredictable
- predictable 0.80 0.55 0.20 0.83 0.1843

confusing
- clearly
structured

1.27 0.71 −1.40 0.43 < 0.0001

tacky - stylish 0.33 0.69 −0.33 0.93 0.2020

Hedonic cheap - pre-
mium 1.40 0.58 0.27 0.92 0.0256

Quality unimaginative
- creative 0.87 0.85 −1.13 0.73 0.0004

dull - capti-
vating 0.87 0.76 −0.60 0.69 0.0032

Attrac- ugly - attrac-
tive 1.53 0.49 −0.53 0.82 < 0.0001

tiveness bad - good 2.00 0.49 0.40 0.62 < 0.0001

Table 3 – Comparison between the average and confidence (CL
95%) of the word pairs. p-Values (calculated using two-sided t-test
with independent variables) higher than 0.05 are marked in red.

Figure 5 – Average and confidence (CL
95%) of the results for each word pair of
the AttrakDiff Mini grouped into pragmatic
quality, hedonic quality and attractiveness.

5 Discussion and Future Work

The results of the first part of the study shows that the conversational approach to retrieve
information is more efficient and perceived to be more convenient by the users. Furthermore,
the analysis of the AttrakDiff Mini shows that the user perceives the new approach as being
more efficient and better to use. There are probably two main reasons for the described results.
One reason being ALEX’s natural language based user interface, which was easy to use by the
participants. But also the fact that the querying process in MOSES and LSF is split into two
different systems may play a role in these results.

The evaluation also revealed shortcomings of the conversational approach of ALEX. Prob-
lems named by the participants can be attributed to two kinds of shortcomings: technical prob-
lems, where the system did not behave as expected by the user, and conceptional problems,
where users expressed that the conversational approach was not the ideal way to solve a task.

The technical problems mainly consisted of scenarios where ALEX was not able to retrieve
the data the participant expected. The first reason for this kind of problem is that sometimes
the system could not detect all necessary information in the input sentence to form a correct
query. The second reason is that some types of questions were not envisioned when designing
the system. While some of these questions asked for information that was not contained in the
domain (e.g. sport courses) other questions were too complex for the system to resolve to a
query (e.g. the question “All [courses] that have similar teaching contents [to the courses in
the last query].”)

While some users used a short command-like interaction with the system, others tried to
express themselves as clearly and unambiguous as possible. The latter behavior manifested
itself in unnaturally long single sentences that contained information that was not necessary.
While most often the system could answer those queries to a satisfying degree, the participants
who posed those queries stated that the interaction took too long and was too complicated.
Another form of conceptional problems arose with users who at first used the system with full
sentences as intended, but later on shortened their inputs to use only necessary keywords. Those

244



participants reported that once they understood the model through the output format they tried
to adapt their queries to the data structure of the system. They stated in the interview that they
like the natural language interface for basic querying but want to use a conventional interface
once they were familiar with the underlying data model.

While the new approach shown in this paper shows a way to create a conversational agent
that can be quickly remodeled for different domains, the evaluation shows that often times the
precision of conventional interfaces are preferred for advanced users and also that some users
have difficulties interacting in full sentences with a program. Future work may include the
expansion of the training data, so that more parts of the domain can be queried in detail. Besides
improving the accuracy and efficiency of the current approach, future work could also focusing
on modifying the concept of ALEX. For example, a hybrid system could be conceptualized
that combines the natural language input of a conversational agent with the search forms of
conventional systems. This new approach could be designed in a way that lets users pose queries
in a conversational way, but also lets them modify existing queries by changing filters through
conventional input fields. This way users unfamiliar with the domain could interact with the
system through the conversational agent and once they are more familiar with the domain, they
could switch between using both approaches depending on the query they are trying to pose.
Further research could also evaluate how spoken input and output changes the usability of the
system.

References

[1] MICHAEL, T.: Design and Implementation of an Advisory Artificial Conversational Agent.
Master’s thesis, Quality and Usability Lab, Technische Universität Berlin, 2016.

[2] ENGELBRECHT, K.-P., B. WEISS, F. ADLER, B. LOUIS, A. MÜHLE, and E. SCHMITT:
Eca answering student queries for data collection and teaching. In 2014 Spoken Language
Technology Workshop. Symposium Proceedings. IEEE, IEEE, 2014.

[3] TURING, A. M.: Computing machinery and intelligence. Mind, 59(236), pp. 433–460,
1950.

[4] O’SHEA, J., Z. BANDAR, and K. CROCKETT: Systems engineering and conversational
agents. In Intelligence-Based Systems Engineering, pp. 201–232. Springer, 2011.

[5] MINKER, W., S. BENNACEF, and J.-L. GAUVAIN: A stochastic case frame approach
for natural language understanding. In Spoken Language, 1996. ICSLP 96. Proceedings.,
Fourth International Conference on, vol. 2, pp. 1013–1016. IEEE, 1996.

[6] BICKMORE, T. and T. GIORGINO: Health dialog systems for patients and consumers.
Journal of biomedical informatics, 39(5), pp. 556–571, 2006.

[7] CROCKETT, K., Z. BANDAR, J. O’SHEA, and D. MCLEAN: Bullying and debt: Develop-
ing novel applications of dialogue systems. Knowledge and Reasoning in Practical Dia-
logue Systems (IJCAI), pp. 1–9, 2009.

[8] HASSENZAHL, M., M. BURMESTER, and F. KOLLER: Attrakdiff: A questionnaire to mea-
sure perceived hedonic and pragmatic quality. In Mensch & Computer, pp. 187–196. 2003.

245


